How to Structural Design a Building/House Step by Step Part-1 (One Way Simply Support Slab)

How to Structural Design a Building/House Step by Step Part-1 (One Way Simply Support Slab)

Any construction building design as per the below step. In this article, we design only slab and next article next steps calculation.

  • Slab Design
  • Slab Beam Design
  • Lintel Beam Design
  • Column Design
  • Plinth Beam Design
  • Footing Design

Slab Design

Some Important Point for Slab Design

Type of Slab

A slab is a plate element having a depth (D), Very small as compared to its length and width slab is used as floor or roof in building, carry uniformly distributed load.

Type of Slab

Slab may be

  • Simply Supported 
  • Continuos 
  • Cantilever 

Also, Read: What Is a Waffle Slab

Type of Slab Based on Support Conditions Are:

1). One Way Spanning Slab

2). Two Way Spanning Slab

3). Flat Slab Resting Directly on Columns Without Beams

4). Grid Slabs or Waffle Slabs

5).  Circular Slab and Other Shapes

One Way Spanning Slab

If the slab is supported on two opposite sides. it is called a one-way spanning slab. In this type of slab, lads are transferred on two opposite supports as shown below figure.

One way slab

One Way Slab

If the slab is supported on four sides, and if ly/lx ≥ 3 one way spaning slab.

For any slab, if ly = lx, the slab has a tendency to bend in both the directions Which increase is provided along lx (Short Span)

Two Way Spanning Slab

It the slab is supported on all four edges and if ly / lx < 2,

The tendency of the slab is to bend in both directions. Such slabs are called a two-way slab. ( as shown below figure.)

Two way slab

In a two-way slab, the main reinforcement is provided along with lx as well as ly direction.

Flat Slab

When the slab is directly supported on columns, without beams, it is known as a flat slab.

Flat slabs are provided to increased the floor height and to permitted a large amount of light which might be obstructed by the depth of beams.

Grid Slabs

When the slab is required on beams with columns only on the periphery of the hall, the slab is called grid slab

Sometimes, in a large hall, public places, marriage halls, auditoriums, etc. a large column-free area is required. In these cases, large deep beams may be permitted but the columns are permitted only on the periphery

Also Read: Floor Slab

One Way Simply Support Slab Calculation /Design

One Way Simply Support slab Below Point Calculation Required

1. Effective Depth (d)

2. Effective Span

3. Reinforcement Requirements

4. Check for Cracking

5. Check for Deflection

6. Check for Development Length (Ld)

Effective Depth (d)

For deflection control 

L/d = 20 X M.F

  • M.F. Modifiction factor from— IS: 456, p.38.Fig-4
  • Assume % steel 0.3 to 0.6%

Fs =  0.58 Fy X (Ast requierd / Ast Provied)

Initially assume that Ast reqierd = Ast Provided 

Fy = 250 N/ Sq.mm —– Fs = 0.58 X 250 = 145 N/ sq.mm.

Fy = 415 N/ Sq.mm —– Fs = 0.58 X 415 = 240 N/ sq.mm.

Fy = 500 N/ Sq.mm —– Fs = 0.58 X 500 = 290 N/ sq.mm.

Effective Span

Clear Span + d

c/c of Supports

Whichever is smaller ——–  as per IS 456-2000 P. 34, CI 22.2.a

Reinforcement Requirements

Minimum reinforcement 

For Fe-250     Pt = 0.15 % of total C/s area (d x D)

For Fe-415     Pt = 0.12 % of total C/s area (d x D)

For Fe-500     Pt = 0.12 % of total C/s area (d x D) ——–  as per IS 456-2000 P. 48, CI 26.5.2.1

Maximum diameter (Sp 34)

For minbar:

  • Plain bars———–10 mm Ø min dia
    Deformed bars—–8 mm Ø min dia

For Distribution bars:

  • Plain bars———–6 mm Ø min dia
    Deformed bars—–6 mm Ø min dia

Check for Cracking

For Min Steel:

3d ——— Where. d = Effective depth

300 mm

Spacing should not exceed smaller these two values.

For Distribution steel:

5 d

450 mm

Spacing should not exceed smaller these two values. ——- IS: 456-2000, P.46

Check for Deflection

Allowable L/d  = 20 X M.F.

  • M.F is Obtained from IS:456-200 P-38 Fig 4

Find actual, L/d

If Actual L/d < allowable  L/d ———- Ok

Check for Development Length (Ld)

IS 456-2000,P.44, Cl. 26.2.3.3 C

Ld should be ≤ 1.3  (M1/V) + L0

Where

Ld = (Ø.σs / 4 τ bd )—————–σs = 0.87 fy          As per IS 456-200, P.42

 

50 % of steel is bent up near support. Therefore find M.R for 50 % of steel only

M1 = M.R. for 50% steel support

V = Shear force at the support 

L0 = Sum of anchorage beyond the center of support

 d

12  Ø

Take L0 as the smaller of two values.

One Way Simply Support SlabCalculation /Design- Example

Sum Point Consider As below

Slab Size 3.2m X 9.2 m

The slab is resting on 300mm thick wall

 

Find One Way Slab or Two Way Slab

ly/lx = 9.2 / 3.2 = 2.875 > 2  

As per the type of slab

Here this one-way slab, So we design the slab as one-way simply supported slab

Effective Depth (d)

Here Consider shorter span as l,

l = 3200 mm = 3.2 m

l/d = 20 x M.F

fy – 415 N/sq.mm, fs = 240 N / Sq.mm

M.F = 1.15 | As per IS Code 456, Fig.4

l/d = 20 x 1.15

3200/d = 20 x 1.115

d = 139.13 mm

Here, d = 150 mm , Assume 10 mm Ø bars

Overall Depth, D = 150 + (Ø / 2 ) + Clear Cover

D = 175 mm

Effective Span

1).  3200 + 150 = 3350 mm

2). c/c of Supports = 3200 + 300 = 3500  mm   | IS: 456-2000,P-34, CI. 22.2.a

Whichever is smaller

Effective Span = l = 3350 mm = 3.35 m.

Reinforcement Requirements

Load Calculations

Dead load 4.375 Kn/m
Floor Finsh 1 Kn/m
Live Load 2.5 Kn/m
Total Load 7.875 Kn/m

Factored Load = 1.5 x 7.875

w = 11.82 kn/m.

Bending Moment

Mu = (w. l2) / 8 = (11.82 / 3.352)

Mu = 16.58 Kn.m.

Main Steel

Pt = 50 (fck/fy) [1 – √ ( 1 -{(4.6 Mu)/ (fck x bd2)})]

Pt = 50 x  (0.482) x (0.0945)

Pt = 0.215 %

Ast = ( pt / 100) x 1000 x 150

Ast = 322.5 mm2

For Spacing 

Sapcing = ({[π/4] x d2}/Ast ) x 1000 mm

Sapcing = ( 78.53 / 322.5 ) x 1000 = 243.50 mm

Distrbution Steel 

Provide a minimum of 0.120% of Total C/s Area | As per IS 456-200 P 48, CI. 26.5.2.1

Ast = (0.12/100) x 1000 x 175 = 210 Sq.mm

Check for Cracking

For Main Steel

1). 3 d = 3 x 150 = 450 mm

2). 300 mm | IS 456-2000 P-46

240 mm provided < 300 mm …………….. o.k.

For Distribution Steel 

1). 5 d = 5 x 150 = 750 mm

2). 450 mm

130 mm provided < 450 mm …………….. o.k.

Check for Deflection

Allowable (l/d) = 20 x M.F.

% pt Provided  = 100 Ast / bd = (100 x 327) / (1000 x 150) = 0.218% | IS Code 456-2000 P.38, Fig 4

M.F = 1.6

Allowable l/d = 20 x 1.6 = 3350 / 150 = 22.33

22.33 < 32 …………….. o.k.

Check for Development Length (Ld)

1). d = 150 mm

2). 12 Ø = 12 x 10 = 120 mm

Taking larger of two values L0 = 150 mm

S.F. at support = 50% of East at mid-span = 327 / 2 = 163.5 Sq.mm

M1 = 0.87 x 415 x 163.5 x 150 x [1-(415 x 163.5) / (20 x 1000 x 150)]

M1 = 8.65 x 106 N.mm = 8.65 kN.m.

1.3 [ M1/V] + L0 = 1.3 x (8.65 x 106 ) / (18.91 x 103 ) + 150

M1 = 744.65 mm

for M 20 , fy = 415 N/mm2

10 mm Ø. bar, tension

Ld = 470 mm

470 mm < 744.65 mm …………….. o.k.

Slab Design

Also, Read: Structural Audit of Building

Reinforcment Details 

One Way Simply Support Slab Calculation /Design Excel Sheet – Download 

Video tutorial for better understanding:


FAQ

Design of a Building

Building design refers to the broadly based architectural, engineering and technical applications to the design of buildings. All building projects require the services of a building designer, typically a licensed architect.

Building Structure Design

The process of  building structure design involves project planning, site investigation, structural system selection, load calculation, structural analysis, structural design, foundation design, structural detailing, compliance with building codes, collaboration and coordination, construction documentation, and construction administration.

Structural Design Examples

Structural Design. Structural Engineering is the branch which involves analysis and design of mainly steel, concrete, or timber framed structures such as Tall Buildings, Bridges, Dams, Towers, Offshore Platforms, Stadiums, Retaining Walls and Foundation.

House Slab Design

House slab design involves determining the appropriate slab type, thickness, reinforcement, control joints, vapor barrier, slope, drainage, and compliance with building codes. It is important to consult a qualified professional for an accurate and safe design.

Structural Design of Building

Structural design is the methodical investigation of the stability, strength and rigidity of structures. The basic objective in structural analysis and design is to produce a structure capable of resisting all applied loads without failure during its intended life.

Beam Design for House

In beam design for a house, you need to calculate the loads, determine the span length, choose the appropriate beam type, size the beam to support the loads, consider reinforcement for concrete beams, analyze shear and moment diagrams, control deflection, ensure fire resistance, design connections, and comply with building codes. Consult a qualified professional for accurate and safe beam design.

Structural Building Design

Structural building design involves calculating loads, selecting a suitable structural system, analyzing the structure, designing structural elements, considering foundation design, complying with building codes, collaborating with other professionals, preparing construction documents, and providing construction administration. Consult a qualified structural engineer for accurate and safe design.

Home Slab Design

  • Soil Investigation
  • Load Calculation
  • Slab Type
  • Slab Thickness
  • Reinforcement
  • Slope and Drainage
  • Compliance and Quality Control

How to Design a Building Structure?

There are mainly 5 essential steps to be followed for the design of any structure. (1) modelling, (2) load analysis, (3) structural analysis, (4) structural design and (5) detailing.

Structural Design of Building Plan

A structural drawing, a type of engineering drawing, is a plan or set of plans and details for how a building or other structure will be built. Structural drawings are generally prepared by registered professional engineers, and based on information provided by architectural drawings.

How to Design Building Structure?

  • Project Planning
  • Site Investigation
  • Structural System Selection
  • Load Calculation
  • Structural Analysis
  • Structural Design

Plinth Beam Design

According to the rules, the bottom of the plinth beam has two reinforcing steel bars with a minimum diameter of 12mm. On the top are two more steel bars for reinforcement with a diameter of at least 10 mm. The reinforcement bars must have a concrete cover of at least 25mm thickness.

How to Design Structure of House?

To design the structure of a house:

  1. Determine requirements and desired layout.
  2. Calculate loads on the structure.
  3. Select a suitable structural system.
  4. Analyze the structure for stability and strength.
  5. Design structural elements like beams, columns, slabs, and walls.
  6. Design an appropriate foundation system.
  7. Ensure compliance with building codes.
  8. Coordinate with other professionals involved in the design.
  9. Prepare detailed construction documents.
  10. Provide construction administration support.

Design of Structures

  1. Plan the project and define requirements.
  2. Calculate the loads the structure will experience.
  3. Select an appropriate structural system.
  4. Analyze the structure for stability and strength.
  5. Design structural elements and connections.
  6. Design a suitable foundation system.
  7. Ensure compliance with building codes.

7 thoughts on “How to Structural Design a Building/House Step by Step Part-1 (One Way Simply Support Slab)”

  1. very good post. i am a civil engineer at bangladesh. need more post like that. if one end continius on end discontinuous .

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top